Mosso Ergograph

From Dead Media Archive
Revision as of 00:44, 8 March 2010 by Harris (Talk | contribs)

Jump to: navigation, search

The Mosso Ergograph is a machine designed to find a body’s individual optimum stage of muscular performance (Bergstrom, 271-271). It is a machine that allowed for the testing of many complex variables and their effects on muscular strength, such as a lack of food, sleep, forced marches, mental fatigue, and the effect of substances such as coffee, sugar, and even emotional affect (Bergstrom, 273-274).


Precursors – dynamometer, myrograph

The dynanometer stands as the motor-sensory predecessor to the ergograph in that it was used to determine the maximum force of a muscle or to compare movements of the same estimated force. James Baldwin describes it in his Dictionary of Philosophy and Psychology, a device that can be compressed or pulled apart in the sides and the amount of force exerted in either case is indicated on scales by a pointer to measure the highest point reached (Baldwin, 607). Mosso criticizes the use of dynanometers for measuring muscular force by saying they did not produce constant indications, a criticism that also applies to his own research on the subject. The issue Mosso found with the dynanometer was that fatigue could not be isolated in one muscle alone, once one muscle is fatigued other muscles take on a greater role in the movement (Mosso, 83). The myrograph designed by Hermann von Helmholtz is the direct, mediatic predecessor as it included the graphing of sensory input. The device, created in 1872, addressed the nature of the nervous current by recording the contraction of the muscles extracted from frog's legs (Mosso, 76). This was a device that allowed for the measured recording of muscular work that our senses would be too slow to grasp.


Picture and Description of the machine

Parts – Mosso’s Ergograph – description

The introduction of this instrument to study muscular strength attempts to conform to the paradigm modern scientific method and attempted to assimilate many of its aspects , including the laboratory space, an emphasis on applicability, and the standardization of procedure. The parts of the machine are clearly visible to the human eye with a few exceptions. The pictures seen here are included within Angelo Mosso's book Fatigue (1904) along with his description of the parts of the machine (Mosso, 86). The machine is composed of two parts: the supporting and registering platforms. These two parts are fixed atop a large table upon which the subject lies supine, with their arm attached to the machine.

The supporting platform of the ergograph (Fig. 1) consists of a plate, upon which are two fixtures that conform to the shape of the dorsal aspect of the hand and the forearm (A and B in the diagram respectively). The forearm and the hand face up when placed within the machine, and hold place at the wrist by two metal clamps (C and D) which are then secured tightly to the wrist by turning the screws at the top of each mechanism. When using the right hand, the index finger is placed into tube E, and the ring finger into tube F, while the middle finger is attached to a string by use of a leather strap connected to the registering apparatus. To ensure a comfortable position of the arm, the supporting platform is placed on an 30 degree incline so that the arm is not in full supination. When the left arm is being tested, the supporting base can be adjusted by the triangular support (G) at the base of the platform.

The registering runner of the ergograph (Fig. 2) connects to the supporting platform by a piece of iron which is connected at positions I and H. It runs underneath the table and cannot be seen when examining the artifact from above. The string attached to the middle finger contained within the supporting platform is connected to the end of the registering runner, and runs along the structure by the use of hooks. The register consists of an iron platform, with a brass fork column (M) upon which connects two steel rods guided into a metal runner (A,B). The metal runner holds a pencil which marks the amount of contractions in the middle finger, by registering them upon a piece of paper (D). The string also runs through this section of the machine, threaded through the metal runner, connecting to another cord that passes over a pully and is attached to a weight of three or more kilogrammes. Between two intervals of contractions, a button is pressed (C) which moves the paper one milimetre to the right in the transversal platform (F). This way contractions can be measured in succession to respond to the raising of the of the weight by the middle finger.

When a hand and arm are placed within the machine, the subject is instructed to contract and flex the middle finger. The height of the contractions, or rather the height of the weight when raised by the contraction, is then represented graphically on the piece of paper placed in the transversal platform. The contractions are done in regularity, through the use of a metronome which strikes every two seconds. The input of the machine is thus literally digitized, the fingers through discrete movements of contraction and release provide the information for the graph. The graph itself however is continuous, an analogue function. The graph resembles a wave, and demonstrates the total amount of finger contraction when pulling the weight (represented by the height of the line) which is then followed by a curvature of the line downward when the finger is relaxed. The curve normally decreases in a relation to the number of contractions made - each length gradually decreasing as the work continues. As the person becomes more fatigued, the movement ceases.

The apparatus, with its form so specific to the human arm, requires the presence of a human being for the functioning of the machine and the experimental process. The machine, controlled by levers and weights, has no movement aside from the contractions being made by the middle finger of the subject. The subject therefore becomes a variable of the machine, and precautions are taken in ergographic experiments to attempt to ensure replicability in later studies. The human subject is complex, individual differences are apparent in the study of fatigue, and differences are seen in how energy is consumed in producing muscular energy from subject to subject (Mosso, 244). The time and amount of food, as well as sleep, physical activity mental activity and the introduction of other substances such as caffeine or alcohol can have profound effects on the experimental process in ergographic research (Rivers and Webber, 34).

Efforts must be made to keep the conditions of these activities as constant and uniform as possible, so as to not compromise the experiment. As well, the condition of training of the muscles must also be taken into account in ergographic research, and some scientists would refuse to test the influence of a drug or other condition on fatigue until the signs of imperfect muscular training (seen through muscular pain and an irregular ergogram) had disappeared. According to Vilém Flusser, the second Industrial Revolution brought on a reversed relationship between human being and tool (Flusser, 45). With the change from tool to machine, human beings switch from being the constant to the variable. With the second Industrial Revolution, the human being is the variable and the machine is the constant; a relationship which can be seen very clearly in the case of the ergograph. To conform to the machine and the experimental process, precautions are taken to standardize human activity. Mosso observed that it in order to obtain the same curve of fatigue every day in a succession of trials, it was necessary to maintain the body under identical conditions, "let one digest or sleep badly or indulge in any excess whatever, and immediately the curve changes." (Mosso 1904: 94)

Graph – how it was measured, how to read it

The curve of fatigue represented by the graph is relatively easy to understand, the longer the line, the greater the contraction of the finger attached to the weight. Shorter lines therefore represent that the subject was unable to bend the finger to full contraction. For the average individual not acquainted with the reading of graphs, a scientist would be needed to interpret the graphic representation as information. The interpretation of the data in relation to successive experimental trials would necessitate knowledge only available to the researcher.


Materials machine was made out of

Perhaps because of its high malleability and affordability, brass was used commonly in making laboratory equipment, and became the standard for weights and measures in England and other European countries. (McCulloch, JR, & Vethake, H, 1852: 161).The four cushions, A, B, C and D are made out of hollowed-out brass. The tubes E and F are also made of brass.

The register platform is made from iron - also commonly used in laboratory equipment because of its low cost and high strength. The platform holds two little brass columns forked to support cylindrical steel rods. Steel replaces iron, which is considered too soft for some equipment. The other materials needed in order to construct an ergograph would include the leather binding used to tie the finger down to the apparatus, and the string to tie the weight to the apparatus was composed of cat-gut, suggested by Mosso because it was used in violins and cellos for its was durability (Mosso, 88). The graph is inscribed paper (some models use a kymograph) upon which a stylus moves back up and down to represent and inscribe the changes that gives a graphical representation of spatial position over time.

The time-frame in which the ergograph was created and active was the ‘brass age’ of psychology, approximately between 1880-1910 (Coons, 767), and as one of such numerous psychological ‘laboratory’ media, it embodied the technoscientific ideal because only in the 19th century had the standardization of weights and measures, together with new methods of precision machining, made possible the quantity production of standardized laboratory instruments.

Standardization itself lends legitimacy to the ‘hardware’ as the launching point for psychological practices, because "it itself was standardized and regulated the production of physical stimuli to which the observer would respond, and it also gave quantified, standardized output to the introspective method. In the manufacture of psychological knowledge, standardization of both process and product now seemed possible” (770).


What is this going under?

Functional: How it mimics the arm – the curvature of the machine (Flusser and stereoscope stuff in class!): Mosso designed the apparatus ergonomically, tilting the machine to make it more comfortable for arm placement. Clamps are put in to constrain the ways in which the muscles and body can move during testing. The objective was to isolate the finger, iin order to create a direct relationship between work performed and an increase in fatigue. The clamps were placed to isolate the muscles as much as possible, as researchers of the time such as Bergstrom and Binet were concerned, and allow for the arm to be as much of an isolated environment as possible, to act and be acted upon in a laboratory setting (Bergstrom, 86-87).


Prosthesis

The intention behind it, as John Bergstrom claims, is to study the action of isolated muscles or single muscle groups and ending with that which brings into play many, or nearly as may be, all the muscles of the body” (246). This is a determined, systematic spreading from muscle sites to an entire mapping of the body (Foucault). The individual body parts became, as the core object of study in physiology of the 19th century, what Jonathan Crary would call the 'bio-power' or 'bio-politics' of populations and control over individuals. In his seminal text Techniques of the Observer, he notes that "it is indeed life that emerges as the new object of power", and the "knowledge [conditioned] by the physical and anatomical functioning of the body, and perhaps most importantly, of the eyes" ushers in the appearance of new methods of power" (Crary, 79-80). New optical apparatuses such as the stereoscope operated as mechanical prostheses that began to define the body by its discrete parts. This concept, also known as metonymy, would highlight an individual sense to speak for the body as a whole, where the sensory faculty such as the motor-sensory reflexes for the ergograph, would be considered contiguous with the instrument itself. Equal within a shared plane of operation, and differing only in the extent of their respective capabilities, the machinery long surpasses the human sense faculty and accentuates our capacity to observe changes in motor-sensory experience (Crary,129)


Criticisms of the ergograph during the period

  • John A. Bergstrom as well as Binet and Vaschide (find the year for that study!!!)* argues that Mosso does not fulfill the ideal that he himself calls for, which is the complete isolation of an individual muscle in order to measure fatigue in a pure relationship, “as nearly as possible like those in experiments with excised muscles (Bergstrom, 247 Input Year of Study)

Mosso was incorrect about which muscles were the ones needed for the ergograph: the lumbrical and palmar muscles are involved along with the muscles he had isolated before, the flexor sublimis and flexor profundus (Bergstrom, Pg. 247 Input Year of Study)

  • The binding of the apparatus itself is a potential source of error. There are accounts of difficulties in securing the desired isolation and in maintaining the same position because of the rigid supports used to clamp the arm and hand down. Bergstrom notes that when the body is taxed with effort, movements of the entire arm and even the rest of the body will aid in the effort to displace the hand or help in raising the weight, which would affect and throw off the results taken by the ergograph. The sheer materiality of the machinery itself obstructs pure results.

Binet and Vaschide in Examen Critique de L'Ergographie de Mosso mention the large and awkward nature of the instrument itself and that it requires constant maintenance.

  • Limitations: The ergographic record is “a test of some general physiological condition” (273), as already mentioned because of the variation of human experience can affect the results. There is also the problem of whether the character of fatigue can be attributed solely to the isolated muscle or to a general state of fatigue (274).Bergstrom concludes by saying that, “With these many factors to obscure the result and with fatigue partly a local phenomenon, we cannot expect to use the ergograph as a measure of exhaustion in the same way as we use a thermometer to measure temperature, but it may do a very important service in aiding us in its field of application to analyze the conditions and effects of work and fatigue” (275).

This does not mean; however, that Mosso, Bergstrom and other physiologists and psychologists experimenting with the ergograph in this time period assumed that the results would lead to a direct and simple correlation between work and fatigue. Bergstrom cautions that one is not to discount the properties of the central nervous system in affecting and stimulating the muscular forces, because the fatigue experienced can certainly be affected by psychic factors (Bergstrom, 273).


  • Problems with design and how to improve it – spring vs. Weight Mosso assumes that the total work which a muscle can do before it is fatigued is equivalent to the sum total of the height of the separate contractions represented on the graph (footnote Franz, 351). Binet challenges such an assumption by saying when a muscle can no longer lift the weight specified by the ergograph, it can perform once more at a smaller weight. Also, when a muscle strains against a weight it cannot lift, the physiological work done in the attempt to complete the task is considerable, although the muscle cannot accomplish the mechanical work. This is the main objective that led Binet and others to devise spring ergographs to counteract the perceived weaknesses of the Mosso ergograph. With the spring the subject does not have to work until the subject is completely fatigued, and can continue to work at lower resistances for longer periods of time.(Franz, 351) The spring ergograph supported by Binet and others were devised because they maintained that under 'normal conditions', the muscle never comes to a state which is incapable of work, and a spring ergograph is more representative of this phenomenon. This would increase the generalization of the ergograph to normal working conditions.




citations

McCulloch, JR, & Vethake, H, 1852). A dictionary, practical, theoretical, and historical, of commerce and commercial navigation. A. Hart