Enigma machine

From Dead Media Archive
Revision as of 15:36, 5 October 2008 by Mpr277 (Talk | contribs) (Military Necessity)

Jump to: navigation, search
Error creating thumbnail: Unable to save thumbnail to destination
Enigma Machine

History of the Enigma

Enigma Basics

The Enigma machine, patented in 1919, displays a keyboard of the twenty-six letters in the pattern of the normal German typewriter, although without numeral or punctuation keys (Stripp 83). It contains three basic parts: “a typewriterlike keyboard on which the plaintext is typed, an internal electromechanical system that converts plaintext to ciphertext, and a display system in which the ciphertext is displayed (Newton 99). The original 1918 Enigma machine contained three rotors, which is the area in charge of transcribing one letter to another and weighed more than one hundred pounds at fifteen inches high. Later editions adopted a more streamline appearance for simpler use and transportation, only weighing fifteen pounds at four inches in height (Newton 100).

Military Necessity

Codebreaking and encryption had not been an essential wartime tactic prior to 1914. However, World War I introduced a necessity for cryptology within the military, especially in regards to commands from high generals and other commanders (Kahn 621).

Pre-WWI Cryptology

During the days of the telegraph and radio, an enemy was capable of intercepting messages sent through the wires or airwaves. When messages were encrypted, breaking the code tended to involve a few brilliant men sitting around a table playing with the cryptogram until a message was configured. The most famous of which occurred during the very beginning of World War I with the Zimmerman Telegraph. The message, from Arthur Zimmermann, the German foreign minister, “proposed that Mexico declare war upon the United States, and that, upon victory, she regain the territories of Texas, New Mexico, and Arizona that she had lost in the Mexican-American War of 1846”. Delivered and published to America, the United States government was able to handle the situation before the Axis Power gained another Ally (Kahn 620). However, this system for cryptanalysis was not the best way to decrypt messages. There was no system for breaking codes, no rulebook or textbook to study in order to simply crack a code. As a result, not all codes could be broken in a timely fashion to be effective.

Post-WWI Cryptology

Most codebreaking occurred in such a fashion throughout the Great War. Battles were won and lost at times based solely on intelligence intercepted and decoded in time to be put to use. World War I demonstrated the importance that cryptology would soon serve in times of battle from then on, including present-day warfare. Even during the time of peace that followed the first World War, “many nations…set up permanent agencies for” cryptanalysis. Many nations had some form of an agency, however, not nearly as large as countries, such as Russia, France, and Italy. Germany, Britain, and America, on the other hand, were the only three major countries to not have such an agency before World War I that developed one soon afterwards. World War I also called for fixing the problem of “error-prone” and “time-consuming” cryptology systems done by hand. When the war was over, many cipher machines were invented and came out onto the market. Most were simple, involving pressing letters on a “typewriter-like keyboard, and the machine would automatically encipher the message.” (Winkel, Deavours, Kahn, Kruh 2). Mechanizing the encryption process made encoding messages, as well as decoding them, faster, more accurately, and more efficiently. Going into World War II, a more complicated cipher machine would be found in Arthur Scherbuius’s Enigma machine.

Enigma Machine: How it Works

Enigma Machine: How it was Used

Enciphering

Deciphering

Aftermath

References

  • Allsop, F. C. Practical Electric Bell Fitting, a Treatise on the Fitting-up and Maintenance of Electric Bells and All the Necessary Apparatus, with Nearly 150 Illustrations. (London : E & F. N. Spon, 1892).