Dirty Media

From Dead Media Archive
Revision as of 17:44, 14 December 2010 by Sadsong23 (Talk | contribs)

Jump to: navigation, search
Error creating thumbnail: Unable to save thumbnail to destination
The neoliberal supply chain in its naked form

"Dust thou art, and unto dust thou shalt return." –Genesis 3:19

"The tradition of all dead generations weighs like a nightmare on the brains of the living." –Marx, The Eighteenth Brumaire

Your iPhone is sleek and beautiful. It was designed in California and made in China. It contains within its form—the form of the commodity—the blood of the subaltern exploited for its production. It will soon be obsolete, ready to be burned in order to harvest the precious metals inside. It will soon turn into toxic dust. This is a dossier about this blood and this dust.

Mineral Extraction, or, Why There is No Software

An open pit mine in Australia.

“It hasn’t helped us come to grips with high tech’s waste that when thinking about high tech many of us blur the distinction between hardware and software, forgetting that in addition to armies of computer-science jocks encoding the next operating system or search engine, high tech also means tons of chemicals, metals, and plastics” (Grossman 2006, 12). Kittler, in his essay “There is No Software,” argues that it is a mistake to blur the distinctions between hardware and software:

Under these tragic conditions, criminal law, at least in Germany, has recently abandoned the very concept of software as mental property; instead, it defines software as necessarily a material thing. The high court’s reasoning, according to which no computer program could ever run without the corresponding electrical charges in silicon circuitry, can illustrate the fact that the virtual undecidability between software and hardware by no means follows, as systems theorists would like to believe, from a simple variation of observation on points. On the contrary, there are good grounds to assume the indispensability and, consequently, the priority of hardware in general. (1997, 152)

“Software, if it existed, would be just a billion-dollar deal based on the cheapest elements on earth. For in their combination on chip, silicon and its oxide provide perfect hardware architectures” (153).

Žižek believes that the way to escape ecological disaster is through an acceleration of the process of denaturing:

I think what we should do to confront properly the threat of ecological disaster is not this New Age stuff of breaking through from this technologically manipulative mood to find our roots in nature, but, on the contrary, to cut off even more our roots in nature. I claim that it is our roots in nature that prevent us from taking seriously things that we already know: that all this normal life we see around us disappear. We can imagine it, but we do not really believe—I mean we don’t effectively act upon it. So again my paradoxical formula is: ecology is the greatest threat, but to confront it properly, we need to get rid of the very notion of nature, meaning nature in its ideological investment, nature as some kind of a normative model of balance and harmonious development. We should become more artificial. (qtd. in Taylor 2009, 162)

See Žižek in action here: http://www.youtube.com/watch?v=iGCfiv1xtoU. As Steven Shaviro has recently suggested, “there is no going back on the network and its circuits of celebrity and control. There is no possibility of reverting to an earlier, supposedly clearer and more honest state of affairs. The only way out is the way through. The only possible oppositional stance is one of embracing these new control technologies, generalizing them, and opening them up without reserve” (2010, 116).

Super-purified silica sand is processed into wafers. This antiseptic setting belies the toxic conditions of silica's refinement.

E-trash Distribution

"digital wizardry relies on a complex array of materials: metals, elements, plastics, and chemical compounds. Each tidy piece of equipment has a story that begins in mines, refineries, factories, rivers, and aquifers and ends on pallets, in dumpsters, and in landfills all around the world."-Grossman, High Tech Trash

As consumer electronics become an important, if not, predominant form of commodity being consumed in many countries around the world, the concern regarding such technologies obsolesces and subsequent disposal has become an increasingly germane issue facing the contemporary world. What’s now know as “e-waste” or “electronic waste” has increasingly become one of the worlds most problematic forms of disposable product.

Because these electronics often contain hazardous chemicals or other toxic materials (such as Copper, antimony, beryllium, barium, zinc, chromium, silver, nickel, and chlorinated and phosphorus-based compounds, as well as polychlorinated biphenyls (PCBs), nonyphenols, and phthalates) (Grossman 2006), their safe disposal require specialized forms of waste management or handling. Unfortunately, such concerns are all to often disregarded by the economy of “fast and cheep” disposal that dominate much e-waste’s eventual destinations, mostly in different parts of Asia and continental Africa, which first world companies and citizens alike are more than willing to turn a blind eye to. In this section, we will be entering a world of waste and circulation, the veritable dark underbelly to Marx’s ‘abode of production’, where the only thing more exploitative than the conditions under which many of the worlds consumer electronics are produced is the manner in which they are disposed of.

The Emergence of E-Waste

“Over the past two decades or more, rapid technological advances have doubled the computing capacity of semiconductor chips almost every eighteen months, bringing us faster computers, smaller cell phones, more efficient machinery and appliances, and an increasing demand for new products. Yet this rushing stream of amazing electronics leaves in its wake environmental degradation and a large volume of hazardous waste— waste created in the collection of the raw materials that go into these products, by the manufacturing process, and by the disposal of these products at the end of their remarkably short lives.” -Grossman, High Tech Trash

From the emergence of the digital age, industrial nations engaged in the never ending proliferation of electronics and other informational devices have been engaged in a relentless cycle of technological growth where preexisting (and often functional) electronic and communications infrastructure is continuously replaced by newer updated versions. As a result of this continuous drive to replace older (and not so old) electronics with new ones, many advanced nations around the world have increasingly found themselves with a growing surplus of obsolete electronics ranging from cell phones, home computers, and an assortment of other industrial and consumer electronics. While in the 1970s and 80s the problem of accounting for (i.e. developing a systematic program for dealing with the safe disposal and/or recycling of such products) discarded electronics seemed like an issue to be dealt with in the distant future, by the 1990s the massive proliferation of personal electronics and their ever accelerating rate of obsolescence expanded to a proportion that threatened to literally bury many advanced nations under a mountain of electronic waste (Rich, 2006).

According to environmental journalist Elizabeth Grossman, as of 2005 there were approximately 1 billion personal computers and over a billion cells phones in use around the world (Grossman, 2006). Unsurprisingly, the highest concentrations of consumer electronics exist in the worlds wealthiest nations. In the United States alone, Americans own over 200 million personal computers, with nearly “five hundred PC’s per thousand people,” standing as the highest per capita concentrations of computers for any large country internationally. Following the U.S., the next most “PC populous” regions are “Europe, Canada, Hong Kong, Japan, South Korea, and Australia, which all average about two hundred to five hundred PCs per thousand people. In northern Europe the concentration of computers approaches that of the United States, and matches it in Scandinavia. Moving south and east, the number of PCs decreases to about fifty to two hundred per thousand people in Spain, Portugal, and eastern Europe.”(Grossman 2006). In the developing world, India and China have become some of the fastest growing markets for consumer electronics. Nationally, India is estimated to have about 5 PC’s per every thousand of its over one billion inhabitants, with a growth rate of ownership at about 40% per year (Grossman, 2006). Similarly in China, where the economy has experienced an exponential amount of industrial and commercial growth, there is approximately ten to fifty PC’s per every thousand people, a ratio that is currently increasing at a staggering rate.

Today it is estimated that Americans, with a population of roughly 290 Million, own over 2 billion pieces of high-tech consumer electronics (Grossman, 2006). Making up this demographic is a staggering density of electronic ownership:

Americans own over 200 million computers, well over 200 million televisions, and over 150 million cell phones. With some five to seven million tons of this stuff becoming obsolete each year, 11 high-tech electronics are now the fastest growing municipal waste stream, both in the United States and in Europe. In Europe, where discarded electronics create about six million tons of solid waste each year, the volume of e-waste— as this trash has come to be called— is growing three times faster than the rest of the European Union’s municipal solid waste combined. (Grossman 2006, p.7)

What accounts for this exponential rise in the amount of electronic waste accumulating around the world? The first thing to consider is the rapid rate at which high tech electronics have proliferated over the last few decades in many of the advanced industrial nations. To illustrate this point it suffices to look back on the growth of sales rates of consumer electronics. Take for example the sales rate of consumer electronics in the U.S. between 1997 and 2002, which quadrupled during that period (Grossman 2006). Or even more staggering the growth of cell phone ownership during roughly the same time (1997-2003), which grew from approximately 15 million subscribers to over 740 million in the countries that make up the Organization for Economic Cooperation and Development (including the United States, Canada, Japan, Mexico, South Korea, Australia, New Zeeland, EU countries, Sweden, Iceland, Turkey, and many other eastern European countries) (Grossman 2006).

Taking into account the massive proliferation of electronic goods in conjunction with their dwindling life-spans and almost negligible resale values, it is little wonder that e-waste has reached such a staggering proportion. As Grossman instructively points out:

As technology continues to evolve, and the system of production that keeps costs relatively low persists, any incentive that may exist for most consumers to repair or otherwise extend the life of high-tech electronics disappears. Unless this equation changes, we will continue to acquire newer and newer models, tossing more out as we go along. (Grossman 2006)

Given the low incentives for both producers and consumers to systematically reuse obsolete electronic goods, what appears as the only alternative is to develop systems for their recycling or disposal. Yet such technologies present a serious problem for recycling because of the toxic components that they contain. Instead of incurring the costs (both economic and environmental) of reclaiming the precious metals contained in these electronics, many choose to sell them off for cut rate prices to what are known as “trash brokers” or “waste traders”, who then broker deals with countries, often developing, with an inexpensive, abundant labor force and poorly enforced global rules on waste trade. Such is the circuit through which the world’s most dangerous waste finds its way from the advanced to the developing world, with disastrous health and environmental costs. (Grossman 2006)

E-Waste: A Global Problem

Environmental Impact and Response

The Aesthetics of Waste

Error creating thumbnail: Unable to save thumbnail to destination
E-waste is horrifying

“To recreate, if not beauty, than aesthetic dimensions… in trash itself. That’s the true love of the world.”- Žižek, Examined Life

"Being a spectator of calamities taking place in another country is a quintessential modern experience, the cumulative offering of more than a century and a half worth of those professional, specialized tourists known as journalists." Sontag, Regarding the Pain of Others

The (Political) Economy of the Dump

How we became posthuman

"The most efficient means to recover value from e-waste is to destroy any computational ability it has, returning it to a raw state." —Samantha MacBride, The Immorality of Waste: Depression-Era Perspectives in the Digital Age


Grossman, Elizabeth. 2006. High Tech Trash: Digital Devices, Hidden Toxins, and Human Health. Washington, DC: Island Press.

Harden, Blaine. 2001. The Dirt in the New Machine. The New York Times (August 12) http://www.nytimes.com/2001/08/12/magazine/the-dirt-in-the-new-machine.html (accessed December 12, 2010).

Kittler, Friedrich. 1997. Literature, Media, Information Systems. Ed. John Johnson. Amsterdam: G+B Arts International.

Kostigen, Thomas. 2008. The Underbelly of Globalization: Our Toxic Wastes Exported to Developing Countries. CSRwire (September 25) http://www.ban.org/Library/Features/080925_the_underbelly_of_globalization.html (accessed on www.ban.org December 12, 2010).

Mooallem, Jon. 2008. The Afterlife of Cellphones. The New York Times (January 13) http://www.nytimes.com/2008/01/13/magazine/13Cellphone-t.html (accessed December 12, 2010).

Shaviro, Steven. 2010. Post-Cinematic Affect. Winchester, UK: Zer0 Books.

Taylor, Astra. 2009. Examined Life: Excursions with Contemporary Thinkers. New York: New Press.